Step of Proof: eq_atom_eq_true_elim_sqequal
12,41
postcript
pdf
Inference at
*
1
1
I
of proof for Lemma
eq
atom
eq
true
elim
sqequal
:
1.
x
: Atom
2.
y
: Atom
3.
x
=a
y
~ tt
x
=
y
latex
by (\p. let x, y = dest_sqequal (h (-1) p) in
by (\p
(Assert (mk_equal_term bool_term y y)
by (\p(As
THENL [(Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t
) inil_term); SqSubstAtAddr [2] x (-1)
) inil_term); SqSubs
THENL [(Auto_aux (first_nat 1:n
) ((first_nat 1:n),(first_nat 4:n)) (first_tok :t) inil_term); Id]]) p)
latex
1
:
1:
4.
x
=a
y
= tt
1:
x
=
y
.
Definitions
t
T
Lemmas
btrue
wf
origin